
Linux Storage Stack

ECE 469, April 15

Aravind Machiry

1

Linux Storage Stack

● Exhaustive and Modular

2

3

Syscall
VFS

FileSystems

Block
Scheduler

Hardware devices

Device Drivers

Page
Cache

4

VFS

● Virtual File System (~22K SLOC).

● Everything is a File!!
● E.g., Network file system! sshfs!?

● ~42 File Systems supported in Linux!!

5

VFS to Applications

● Common interface for accessing files irrespective of file
systems.

● File systems no need to worry about interface to user.

6

VFS to File System Implementers

● Exposes common optimization logic. E.g., Page cache, Path
lookup.

● Define functions to be implemented by the filesystems.

7

What does File System Implementers
do?

8

Page Cache Page
Cache

● Reduce Disk IO

● Memory pages maintained by the kernel for storing contents
to/from disks.

● Disk block <-> Page

9

File IO with Page Cache
● read(): Serviced by Page Cache!

● Optimization: Read ahead!

● write(): Dirty pages; will be written to disk later!
● Can loose data!?

● sync(): Flush all writes to files.
● Synchronous

10

File IO with Page Cache

disk blocks

page cache

char buf[n]
read()USER

KERNEL

11

File IO with Page Cache

disk blocks

page cache

char buf[n]
read()USER

KERNEL

12

Page Cache Implementation

● For each file (inode):

● Has addr space.

● File offset -> Page cache.

● For each page:
○ A reference to the file/process.

○ The offset with in the file.

13

The mmap system call

● Bind virtual memory to file blocks.

fd = open(“hello.txt”, O_RDWR);

// map 4k from offset 0 into virtual address space of the
process.
char *data = mmap(..,fd, 0);

// read 7th character from file.
char c = data[6];

// write 101th character into file.
data[100] = ‘a’

14

Flushing mmap region to file

15

Memory RW with Page Cache

disk blocks

page cache

mmap

USER

KERNEL

16

Memory RW with Page Cache

disk blocks

page cache

mmap

USER

KERNEL

17

Mmap v/s Explicit IO

disk blocks

page cache

mmap

disk blocks

page cache

char buf[n]
read()

● Mmap:
● No syscalls on each access.

● Page cache <-> Disk.

● Dynamic paging.

● Extra PTEs.

● Mapping large files? IO Errors?

● File IO
● Universal.

● app buffer <-> page cache <-> Disk.

