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Linux Storage Stack

● Exhaustive and Modular
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VFS

● Virtual File System (~22K SLOC).

● Everything is a File!!
● E.g., Network file system! sshfs!?

● ~42 File Systems supported in Linux!!
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VFS to Applications

● Common interface for accessing files irrespective of file 
systems.

● File systems no need to worry about interface to user.
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VFS to File System Implementers

● Exposes common optimization logic. E.g., Page cache, Path 
lookup. 

● Define functions to be implemented by the filesystems.
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What does File System Implementers 
do?
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Page Cache Page 
Cache

● Reduce Disk IO

● Memory pages maintained by the kernel for storing contents 
to/from disks.

● Disk block  <-> Page 
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File IO with Page Cache
● read(): Serviced by Page Cache!

● Optimization: Read ahead!

● write(): Dirty pages; will be written to disk later!
● Can loose data!?

● sync(): Flush all writes to files.
● Synchronous 
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File IO with Page Cache

disk blocks

page cache

char buf[n]
read()USER

KERNEL
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File IO with Page Cache
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Page Cache Implementation

● For each file (inode):

● Has addr space.

● File offset -> Page cache.

● For each page:
○ A reference to the file/process.

○ The offset with in the file.
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The mmap system call

● Bind virtual memory to file blocks.

fd = open(“hello.txt”, O_RDWR);

// map 4k from offset 0 into virtual address space of the 
process.
char *data = mmap(..,fd, 0);

// read 7th character from file.
char c = data[6];

// write 101th character into file.
data[100] = ‘a’
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Flushing mmap region to file
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Memory RW with Page Cache

disk blocks
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Memory RW with Page Cache

disk blocks

page cache

mmap

USER

KERNEL



17

Mmap v/s Explicit IO

disk blocks

page cache

mmap

disk blocks

page cache

char buf[n]
read()

● Mmap:
● No syscalls on each access.

● Page cache <-> Disk.

● Dynamic paging.

● Extra PTEs.

● Mapping large files? IO Errors?

● File IO
● Universal.

● app buffer <-> page cache <-> Disk.


