Linux Storage Stack

ECE 469, April 15

Aravind Machiry

Linux Storage Stack

o Exhaustive and Modular

s
2

over Ethernet,
Fibre Channel

The Linux Storage Stack Diagram

FireWire
Virtual Host

version 4.10, 2017-03-10
outlines the Linux storage stack as of Kernel version 4.10

mmal
{Gnamymous pages)

(Applications (processes)
vfs_writev, vs_ready, .. = HEIR
gl 5| %
©; 5

malloc

BIOs (block 1/0s)
block devices

userspace

> Userspace (e.g. sshfs)
network

(optional)

Devices on top of “normal”

BIOs (block 1/0s)

BIOs L

(bcache)
lBIOs

Block Layer

1/0 scheduler

blkmgq

‘Maps BIOs to requests

multi queue

Request
based drivers

Request
based drivers

BIOs

hooked in device drivers
(the

hook in like stacked
devices do)

B10
based drivers

Request-based
device mapper targets

sysfs
(transport attributes)

Transﬁnrt classes

nelwolk
memory

T'&'L

SCSI low level drivers

L network

==

Physical devices

(glazwxx)
Tpfe)
o =R D) | @) | (CET)

TH-MAS

e Ungx Storage stack pagram

s mshamag e conienul 10 ST S BRAR
St o W Fscharan Soor Scionbermer

BYSA 3.0, et Wi Tereak ko mons oAcens ey Sar35)

Fibre Channel

feliire

over Ethernet

15CS1
le——

Fibre Channel

—
FireWire
UsB
Virtual Host

!

The Linux Storage Stack Diagram

version 4.10, 2017-03-10
outlines the Linux storage stack as of Kernel version 4.10

-

BRI)
@norymous pages!
5 (Applications (processes) - —

I I I I

=1 | malloc

vfs_writev, vfs_ready, ... [

Special
Direct 1/0 purpose FS
(O_DIRECT)

userspace (e.g. sshfs)
ork

netwol

| (optional)

userspace

BIOs (block 1/0s) Devices on top of “normal”

BIOs (block I/0s)
block devices

BlOs JtBlOs
BIOs
1/q Y
Mups
ocC e drivers
(they hool ike stacked
devices do;
Requ BIO
bused drvvers bqsed drlvers based drivers
7

Request-based
device mapper targets

sysfs
(transport attributes)

Transport classes

SCSI upper level d

Device Drivers

H-

SCSI low level drivers

e e =

**

T8

I b network I

oo (st B (430 | (%) ()

Hardware devices Y

e
Linux Storage Stack Diagram ®
http: /i thomas-krenn comyenlk LU Storagt. Stack Diagram
Ereqte By aner ischer and Ceors Tinberae
License: CCBY-SA 3.0, See Dip://ereativecommons oro/iicenses/by Sa/3.0/

mmap
(anonymous pages
[Applications (processes)]_y_p_g_
— — = malloc
V F S vfs_writev, vfs_ready, ... % jNg' % % g :
o = -
Y Y 3y Sy @y sy ¥ YY
VFS
| Block-based FS | 'Network FS ~ Pseudo FS Special
Direct I/0 GREDEDE B @D @ EGE» PUrese FS oo
(opirecH | G GED EEED) D @ W gmp aEp (ramfs) cache
@ & & G wsbfs) () (@evtmpfs)
Stackable FS ‘ L b

L > userspace (e.g. sshfs)
—> network

e Virtual File System (~22K SLOC).

e Everythingis a File!!
e E.g., Network file system! sshfs!?

e ~42 File Systems supported in Linux!!

. . @;]_ User-space program m
VFS to Applications] ::‘

>

VFS -|
<

e Common interface for accessing files irrespective of file
systems.

o File systems no need to worry about interface to user.

VFS to File System Implementers

e Exposes common optimization logic. E.g., Page cache, Path
lookup.

o Define functions to be implemented by the filesystems.

jffs2 write begin|()
jffs2 write end()

l

Driver (MTD) &
Storage media (flash)

write() [sys write() ¥

What does File System Implementers

do

?

User space application (ex: cp)

—| Syscalls: open, read, write, etc.

VFS: Virtual File System

User-space

Kernel-space

Embedded

Hard disk USB drive |

flash

Hardware

[BmSR mous poges oee
[Applications (processes) (X N N
— — = malloc 'Y X X)
vfs_writev, vfs_ready, ... S % H % g : [X X
o = -
Yy 8y 5y Sy 7y sy Y Yy oe®
VFS Ve ®
a g e a c e ~ Block-based FS | 'Network FS Pseudo FS Special
Direct 1/0 ERHEDEDHEE D GO g g P Page
(opirecH | G GED EEED) D @ W gmp aEp (ramfs) Cach
® @@ @ @ s (=) (Gevmps) ache
Stackable FS ‘ \ s
L > userspace (e.g. sshfs)
—> network

e Reduce Disk 10

e Memory pages maintained by the kernel for storing contents
to/from disks.

e Disk block <->Page

File IO with Page Cache

e read(): Serviced by Page Cache!
e Optimization: Read ahead!

e write(): Dirty pages; will be written to disk later!
e Canloose datal?

e sync(): Flush all writes to files.
e Synchronous

File IO with Page Cache

USER <ad()

char buf[n]
I —

2\

page cache

KERNEL
disk blocks

10

File IO with Page Cache

USER <ad()

\

char buf[n]

page cache
KERNEL T
disk blocks

11

Page Cache Implementation

e For each file (inode):
e Has addr space.
o File offset -> Page cache.

e For each page:
o A reference to the file/process.

O The offset with in the file.

12

The mmap system call

Bind virtual memory to file blocks.

fd = open(“hello.txt”, O_RDWR);

// map 4k from offset 0 1into virtual address space of the
process.
char *data = mmap(..,fd, 0);

// read 7th character from file.
char c = datal[6];

// write 101th character into file.
data[1l00] = ‘a’

13

Flushing mmap region to file

msync - synchronize a file with a memory map

SYNOPSIS
#include <sys/mman.h>

int msync(void *addr, size_t length, int flags);

DESCRIPTION
msync() flushes changes made to the in-core copy of a f

i mapped 1
part of the file that corresponds to the memory area startin t dr and i

14

Memory RW with Page Cache

USER | r =
L L
mmap 5
A/
page cache
KERNEL
disk blocks

15

Memory RW with Page Cache

USER | I
L L 1
mmap 5
\J
page cache m
KERNEL
disk blocks

16

Mmap v/s Explicit 10

Mmap:

No syscalls on each access.
Page cache <-> Disk.
Dynamic paging.

Extra PTEs.

Mapping large files? 10 Errors?

File 1O
. Universal.

app buffer <-> page cache <-> Disk.

(X X
(N N N
9O O
eoe®
®oe®
@
[T ~1
L L1
mmap 5
v
page cache m
disk blocks
char buf[n]
0
)
age cache
pag)

disk blocks 17

