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e Virtual File System (~22K SLOC).

e Everythingis a File!!
e E.g., Network file system! sshfs!?

e ~42 File Systems supported in Linux!!
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e Common interface for accessing files irrespective of file
systems.

o File systems no need to worry about interface to user.



VFS to File System Implementers

e Exposes common optimization logic. E.g., Page cache, Path
lookup.

o Define functions to be implemented by the filesystems.

jffs2 write begin|()
jffs2 write end()

l

Driver (MTD) &
Storage media (flash)

write() [ sys write() ¥




What does File System Implementers

do

?

User space application (ex: cp)

—| Syscalls: open, read, write, etc.

VFS: Virtual File System

User-space

Kernel-space

Embedded

Hard disk USB drive |

flash

Hardware
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e Reduce Disk 10

e Memory pages maintained by the kernel for storing contents
to/from disks.

e Disk block <->Page



File IO with Page Cache

e read(): Serviced by Page Cache!
e Optimization: Read ahead!

e write(): Dirty pages; will be written to disk later!
e Canloose datal?

e sync(): Flush all writes to files.
e Synchronous




File IO with Page Cache
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char buf[n]
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File IO with Page Cache
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Page Cache Implementation

e For each file (inode):
e Has addr space.
o File offset -> Page cache.

e For each page:
o A reference to the file/process.

O The offset with in the file.
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The mmap system call

Bind virtual memory to file blocks.

fd = open(“hello.txt”, O_RDWR);

// map 4k from offset 0 1into virtual address space of the
process.
char *data = mmap(..,fd, 0);

// read 7th character from file.
char c = datal[6];

// write 101th character into file.
data[1l00] = ‘a’
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Flushing mmap region to file

msync - synchronize a file with a memory map

SYNOPSIS
#include <sys/mman.h>

int msync(void *addr, size_t length, int flags);

DESCRIPTION
msync() flushes changes made to the in-core copy of a f

i mapped 1
part of the file that corresponds to the memory area startin t dr and i
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Memory RW with Page Cache

USER | r =
L L
mmap 5
A/
page cache
KERNEL
disk blocks

15



Memory RW with Page Cache
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Mmap v/s Explicit 10

Mmap:

No syscalls on each access.
Page cache <-> Disk.
Dynamic paging.

Extra PTEs.

Mapping large files? 10 Errors?

File 1O
. Universal.

app buffer <-> page cache <-> Disk.
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